Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.685
Filtrar
1.
Cryo Letters ; 45(2): 100-105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557988

RESUMO

BACKGROUND: Nanotechnology can benefit livestock industries, especially through postharvest semen manipulation. Zinc oxide nanoparticles (Np-ZnO) are potentially an example. OBJECTIVE: To investigate how the addition of zinc oxide nanoparticles (Np-ZnO) affected the characteristics of post-thawed goat semen. MATERIALS AND METHODS: Seminal pools from four Saanen bucks were used. Semen was diluted in Tris-egg yolk extender, supplemented with Np-ZnO (0, 50, 100 or 200 ug/mL), frozen and stored in liquid nitrogen (-196 degree C), and thawed in a water bath (37 degree C / 30 s). Semen samples were evaluated for sperm kinetics by computer-assisted sperm analysis (CASA), and assessed for other functional properties by epifluorescence microscopy, such as plasma membrane integrity (PMi), acrosomal membrane integrity (ACi) and mitochondrial membrane potential (MMP). RESULTS: For total motility (TM), the group treated with 200 ug/mL Np-ZnO was superior to the control. In straight-line velocity (VSL), the control was better than the group containing 200 ug/mL of Np-ZnO. For average path velocity (VAP), the control was higher than with 100 ug/mL Np-ZnO. For linearity (LIN), the control was higher than with 200 µg/mL Np-ZnO. In straightness (STR), the control and 100 µg/mL Np-ZnO were higher than with 200 ug/mL Np-ZnO. In wobble (WOB), the control was better than the 50 µg/mL Np-ZnO treatment. In PMi, ACi and MMP no significant differences were found. CONCLUSION: The addition of Np-ZnO (200 ug/mL) to the goat semen freezing extender improved the total motility of cells, whilst negatively affecting sperm kinetics. https://doi.org/10.54680/fr24210110512.


Assuntos
Preservação do Sêmen , Óxido de Zinco , Animais , Masculino , Congelamento , Sêmen , Óxido de Zinco/farmacologia , Cabras , Crioprotetores/farmacologia , Criopreservação/veterinária , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Espermatozoides
2.
Protein Sci ; 33(5): e4989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38659213

RESUMO

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrinsicamente Desordenadas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Proteínas Intrinsicamente Desordenadas/genética , Congelamento , Modelos Moleculares , Multimerização Proteica , Estrutura Secundária de Proteína
3.
J Hazard Mater ; 470: 134249, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38603909

RESUMO

In cold regions, microplastics (MPs) in the soil undergo freeze-thaw (FT) aging process. Little is known about how FT aged MPs influence soil physico-chemical properties and microbial communities. Here, two environmentally relevant concentrations (50 and 500 mg/kg) of 50 and 500 µm polyethylene (PE) and polypropylene (PP) MPs treated soils were subjected to 45-day FT cycles (FTCs). Results showed that MPs experienced surface morphology, hydrophobicity and crystallinity alterations after FTCs. After 45-day FTCs, the soil urease (SUE) activity in control (MPs-free group that underwent FTCs) was 33.49 U/g. SUE activity in 50 µm PE group was reduced by 19.66 %, while increased by 21.16 % and 37.73 % in 500 µm PE and PP groups compared to control. The highest Shannon index was found in 50 µm PP-MPs group at 50 mg/kg, 2.26 % higher than control (7.09). Compared to control (average weighted degree=8.024), all aged MPs increased the complexity of network (0.19-1.43 %). Bacterial biomarkers of aged PP-MPs were associated with pollutant degradation. Aged PP-MPs affected genetic information, cellular processes, and disrupted the biosynthesis of metabolites. This study provides new insights into the potential hazards of MPs after FTCs on soil ecosystem in cold regions.


Assuntos
Microplásticos , Polietileno , Polipropilenos , Microbiologia do Solo , Poluentes do Solo , Urease , Polietileno/toxicidade , Microplásticos/toxicidade , Poluentes do Solo/toxicidade , Urease/metabolismo , Congelamento , Microbiota/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/genética , Solo/química
4.
J Texture Stud ; 55(2): e12830, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38581175

RESUMO

Freezing and blanching are essential processing steps in the production of frozen yellow peaches, inevitably leading to texture softening of the fruit. In this study, the synergistic mechanism of stem blanching, freezing conditions (-20°C, -40°C, -80°C, and liquid nitrogen [-173°C]), and sample sizes (cubes, slices, and half peaches) on macroscopic properties of texture, cellular structure, and ice crystal size distribution of frozen yellow peaches were measured. Blanching enhanced the heat and mass transfer rates in the subsequent freezing process. For nonblanched samples, cell membrane integrity was lost at any freezing rate, causing a significant reduction in textural quality. Slow freezing further exacerbated the texture softening, while the ultra-rapid freezing caused structural rupture. For blanched samples, the half peaches softened the most. The water holding capacity and fracture stress were not significantly affected by changes in freezing rate, although the ice crystal size distribution was more susceptible to the freezing rate. Peach cubes that had undergone blanching and rapid freezing (-80°C) experienced 4% less drip loss than nonblanched samples. However, blanching softened yellow peaches more than any freezing conditions. The implementation of uniform and shorter duration blanching, along with rapid freezing, has been proven to be more effective in preserving the texture of frozen yellow peaches. Optimization of the blanching process may be more important than increasing the freezing rate to improve the textural quality of frozen yellow peaches.


Assuntos
Prunus persica , Vapor , Congelamento , Conservação de Alimentos , Gelo
5.
Food Res Int ; 184: 114265, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609243

RESUMO

Radio frequency explosion puffing (RFEP) is a novel oil-free puffing technique used to produce crispy textured and nutritious puffed snacks. This study aimed to investigate the effects of freezing at different temperatures (-20 °C, -40 °C, -80 °C) for14 h and freezing times (1 and 2 times) on the cellular structure of purple sweet potato and the quality of RFEP chips. The analysis of cell microstructure, conductivity, and rheology revealed that higher freezing temperatures and more freezing times resulted in increased damage to the cellular structure, leading to greater cell membrane permeability and decreased cell wall stiffness. However, excessive damage to cellular structure caused tissue structure to collapse. Compared with the control group (4 °C), the RFEP sample pre-frozen once at -40 °C had a 47.13 % increase in puffing ratio and a 61.93 % increase in crispness, while hardness decreased by 23.44 % (p < 0.05). There was no significant change in anthocyanin retention or color difference. X-ray microtomography demonstrated that the RFEP sample pre-frozen once at -40 °C exhibited a more homogeneous morphology and uniform pore distribution, resulting in the highest overall acceptability. In conclusion, freezing pre-treatment before RFEP can significantly enhance the puffing quality, making this an effective method for preparing oil-free puffing products for fruits and vegetables.


Assuntos
Ipomoea batatas , Congelamento , Explosões , Parede Celular , Temperatura Baixa
6.
PLoS One ; 19(4): e0302409, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662726

RESUMO

Natural disasters such as landslides often occur on soil slopes in seasonally frozen areas that undergo freeze‒thaw cycling. Ecological slope protection is an effective way to prevent such disasters. To explore the change in the mechanical properties of soil under the influence of both root reinforcement and freeze‒thaw cycles and its influence on slope stability, the Baijiabao landslide in the Three Gorges Reservoir area was taken as an example. The mechanical properties of soil under different confining pressures, vegetation coverages (VCs) and numbers of freeze‒thaw cycles were studied via mechanical tests, such as triaxial compression tests, wave velocity tests and FLAC3D simulations. The results show that the shear strength of a root-soil composite increases with increasing confining pressure and VC and decreases with increasing number of freeze‒thaw cycles. Bermuda grass roots and confining pressure jointly improve the durability of soil under freeze‒thaw conditions. However, with an increase in the number of freeze‒thaw cycles, the resistance of root reinforcement to freeze‒thaw action gradually decreases. The observed effect of freeze‒thaw cycles on soil degradation was divided into three stages: a significant decrease in strength, a slight decrease in strength and strength stability. Freeze‒thaw cycles and VC mainly affect the cohesion of the soil and have little effect on the internal friction angle. Compared with that of a bare soil slope, the safety factor of a slope covered with plants is larger, the maximum displacement of a landslide is smaller, and it is less affected by freezing and thawing. These findings can provide a reference for research on ecological slope protection technology.


Assuntos
Congelamento , Raízes de Plantas , Solo , Solo/química , Raízes de Plantas/fisiologia , Deslizamentos de Terra
7.
Food Chem ; 447: 138980, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38564849

RESUMO

Supercooling is a main controllable factor for the fundamental understanding the high-pressure shift freezing (HPSF). In the study, a self-developed device based on the diamond anvil cell (DAC) and confocal Raman microscopy was utilized to realize an in-situ investigation of supercooling behaviour during HPSF of the pure water and sucrose solution. The spectra were used to determine the freezing point which is shown as a spectral phase marker (SD). The hydrogen bond strengths of water and sucrose solution under supercooling states were estimated by peak position and peak area ratio of sub-peaks. The results showed that the OH stretching bands had redshift under supercooling states. Moreover, the addition of sucrose molecules could strengthen the hydrogen bonding strength of water molecules under supercooling states. Thus, the DAC combined with Raman spectroscopy could be considered a novel strategy for a deep understanding of the supercooling behaviour during HPSF.


Assuntos
Água , Congelamento , Água/química , Temperatura de Transição , Microscopia Confocal , Ligação de Hidrogênio
8.
J Texture Stud ; 55(2): e12824, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38453153

RESUMO

To inhibit the quality deterioration caused by the frozen storage of surimi products, this work investigated the effect of freezing methods, including raw-freezing-setting-heating, raw-setting-freezing-heating, and raw-setting-heating-freezing, on quality changes in surimi gel. The moisture loss, physical-chemical properties, and protein structure conformation of surimi gel derived from Bombay duck (BD) were assessed following frozen storage periods of 20, 40, and 60 days. The findings suggest that the raw-setting-heating-freezing method yielded optimal surimi gel properties with extended frozen storage time. Employing this approach led to a reduction in thawing loss, while cooking loss remained constant. After 60 days of frozen storage, the hardness exhibited an initial increase followed by a subsequent decrease, and water-holding capacity increased to 68.2%. Notably, the impact on surimi gel during the late stage of frozen storage was more pronounced throughout the formation of ice crystals, resulting in decreased disulfide bond content. Scanning hematoxylin-eosin (HE) staining slices of samples following thawing and heating demonstrated that the raw-setting-heating-freezing method could better resist the effect of ice crystals in frozen storage period on surimi tissue, while the gel on setting process could delay the erosion imposed on by ice crystals during frozen storage. This study provides a scientific foundation for the industrialization on frozen BD surimi products.


Assuntos
Patos , Gelo , Animais , Congelamento , Peixes , Culinária
9.
Sci Rep ; 14(1): 5599, 2024 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454107

RESUMO

Accurately monitoring the extent of freezing in biological tissue is an important requirement for cryoablation, a minimally invasive cancer treatment that induces cell death by freezing tissue with a cryoprobe. During the procedure, monitoring is required to avoid unnecessary harm to the surrounding healthy tissue and to ensure the tumor is properly encapsulated. One commonly used monitoring method is attenuation-based computed tomography (CT), which visualizes the ice ball by utilizing its hypoattenuating properties compared to unfrozen tissue. However, the contrast between frozen and unfrozen tissue remains low. In a proof-of-principle experiment, we show that the contrast between frozen and unfrozen parts of a porcine phantom mimicking breast tissue can be greatly enhanced by acquiring X-ray dark-field images that capture the increasing small-angle scattering caused by the ice crystals formed during the procedure. Our results show that, compared to X-ray attenuation, the frozen region is detected significantly better in dark-field radiographs and CT scans of the phantom. These findings demonstrate that X-ray dark-field imaging could be a potential candidate for improved monitoring of cryoablation procedures.


Assuntos
Criocirurgia , Gelo , Suínos , Animais , Congelamento , Raios X , Tomografia Computadorizada por Raios X/métodos , Criocirurgia/métodos
10.
Meat Sci ; 212: 109468, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38428150

RESUMO

This study investigated whether the freezing-then-aging treatment of beef affects protein digestibility and release of potentially bioactive peptides using an in vitro infant digestion model. After 28 days of storage, aged-only (AO) and frozen-then-aged (FA) beef exhibited higher α-amino group contents in the 10% trichloroacetic acid-soluble fraction compared to day 0 (P < 0.05). Following in vitro digestion in the infant model, FA showed higher contents of α-amino groups and smaller proteins (<3 and 1 kDa) than day 0 and AO (P < 0.05). Relative contributions of myofibrillar, sarcoplasmic, and stromal proteins to the bioactive peptides released from AO and FA differed from those of day 0. In addition, FA exhibited a higher proportion of potential bioactive peptide sequences. Overall, freezing-then-aging treatment can enhance the potential health benefits of beef to be used as a protein source for complementary foods.


Assuntos
Peptídeos , Proteínas , Lactente , Animais , Bovinos , Humanos , Congelamento , Peptídeos/química , Trato Gastrointestinal , Digestão
11.
J Clin Lab Anal ; 38(7): e25023, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544348

RESUMO

BACKGROUND: Faecal microbiota transplantation (FMT) is an established treatment for Clostridioides difficile infection and is under investigation for other conditions. The availability of suitable donors and the logistics of fresh stool preparation present challenges, making frozen, biobanked stools an attractive alternative. AIMS: This study aimed to evaluate the long-term viability of bacterial populations in faecal samples stored at -80°C for up to 12 months, supporting the feasibility of using frozen grafts for FMT. METHODS: Fifteen faecal samples from nine healthy donors were processed, mixed with cryoprotectants and stored at -80°C. Samples were assessed at baseline and after 3, 6 and 12 months using quantitative culturing methods to determine the concentration of live bacteria. RESULTS: Quantitative analysis showed no significant decrease in bacterial viability over the 12-month period for both aerobic and anaerobic cultures (p = 0.09). At all timepoints, the coefficients of variability in colony-forming unit (CFU) counts were greater between samples (102 ± 21% and 100 ± 13% for aerobic and anaerobic cultures, respectively) than the variability between measurements of the same sample (30 ± 22% and 30 ± 19%). CONCLUSIONS: The study confirmed that faecal microbiota can be preserved with high viability in deep-freeze storage for up to a year, making allogenic FMT from biobanked samples a viable and safer option for patients. However, a multidonor approach may be beneficial to mitigate the risk of viability loss in any single donor sample.


Assuntos
Transplante de Microbiota Fecal , Fezes , Viabilidade Microbiana , Humanos , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Congelamento , Criopreservação/métodos , Masculino
12.
Environ Sci Pollut Res Int ; 31(17): 25147-25162, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38468006

RESUMO

The comparative study of the transformation among sediment phosphorus (P) fractions in different lake types is a global issue in lake ecosystems. However, interactions between sediment P fractions, environmental factors, and microorganisms vary with the nutrient status of lakes. In this study, we combine sequential extraction and metagenomics sequencing to assess the characteristics of P fractions and transformation in sediments from different lake types in the Inner Mongolian section of the Yellow River Basin. We then further explore the response of relevant microbial and environmental drivers to P fraction transformation and bioavailability in sediments. The sediments of all three lakes exhibited strong exogenous pollution input characteristics, and higher nutritional conditions led to enhanced sediment P fraction transformation ability. The transformation capacity of the sediment P fractions also differed among the different lake types at the same latitudes, which is affected by many factors such as lake environmental factors and microorganisms. Different drivers reflected the mutual control of weakly adsorbed phosphorus (WA-P), potential active phosphorus (PA-P), Fe/Al-bound phosphorus (NaOH-P), and Ca-bound phosphorus (HCl-P) with the bio-directly available phosphorus (Bio-P). The transformation of NaOH-P in reducing environments can improve P bioavailability, while HCl-P is not easily bioavailable in weakly alkaline environments. There were significant differences in the bacterial community diversity and composition between the different lake types at the same latitude (p < 0.05), and the role of P fractions was stronger in the sediments of lakes with rich biodiversity than in poor biodiversity. Lake eutrophication recovery was somewhat hindered by the microbial interactions of P cycling and P fractions within the sediment. This study provides data and theoretical support for exploring the commonalities and differences among different lake types in the Inner Mongolian section of the Yellow River Basin. Besides, it is representative and typical for promoting the optimization of ecological security patterns in ecologically fragile watersheds.


Assuntos
Lagos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ecossistema , Fósforo/análise , Congelamento , Hidróxido de Sódio , Monitoramento Ambiental , Sedimentos Geológicos , Eutrofização , China
13.
J Mech Behav Biomed Mater ; 154: 106503, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38522154

RESUMO

Low temperatures slow or halt undesired biological and chemical processes, protecting cells, tissues, and organs during storage. Cryopreservation techniques, including controlled media exchange and regulated freezing conditions, aim to mitigate the physical consequences of freezing. Dimethyl sulfoxide (DMSO), for example, is a penetrating cryoprotecting agent (CPA) that minimizes ice crystal growth by replacing intracellular water, while polyvinyl alcohol (PVA) is a nonpenetrating CPA that prevents recrystallization during thawing. Since proteins and ground substance dominate the passive properties of soft biological tissues, we studied how different freezing rates, storage temperatures, storage durations, and the presence of cryoprotecting agents (5% [v/v] DMSO + 1 mg/mL PVA) impact the histomechanical properties of the internal thoracic artery (ITA), a clinically relevant blood vessel with both elastic and muscular characteristics. Remarkably, biaxial mechanical analyses failed to reveal significant differences among the ten groups tested, suggesting that mechanical properties are virtually independent of the cryopreservation technique. Scanning electron microscopy revealed minor CPA-independent delamination in rapidly frozen samples, while cryoprotected ITAs had better post-thaw viability than their unprotected counterparts using methyl thiazole-tetrazolium (MTT) metabolic assays, especially when frozen at a controlled rate. These results can be used to inform ongoing and future studies in vascular engineering, physiology, and mechanics.


Assuntos
Crioprotetores , Dimetil Sulfóxido , Dimetil Sulfóxido/química , Crioprotetores/química , Criopreservação/métodos , Congelamento , Artérias
14.
Environ Sci Pollut Res Int ; 31(17): 26330-26339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38523217

RESUMO

Phase change materials enhance the thermal comfort of buildings by utilizing stored thermal energy. In large air-conditioning systems, ice storage plays a crucial role in managing peak power loads. This experimental study explores the freezing characteristics of deionized water containing suspended iron oxide nanoparticles in spherical containers for cold storage. The synthesized nanofluid phase change material (NFPCM) was investigated for its freezing behavior under surrounding fluid temperatures of - 2 °C and - 6 °C. The uniformity in charging of NFPCM is the unique feature prevalent in the first quarter of the charging, with 50% mass frozen observed. An increased surface heat flux of 200% was achieved using NFPCM at Tsurr = -6 °C. The chiller operational time is optimally reduced by 75% by considering twice the container design's phase change materials. Adding iron oxide nanoparticles and partial charging is suitable for uniform heat transfer for the shorter freezing duration in cooling applications. The novelty of the present study is that the proposed NFPCM nearly nullifies the subcooling effects of deionized water without using nucleating agents. This NFPCM appreciably enhances power competence, yielding large-scale air-conditioning systems' desired economic impact and sustainability. The reported results align with Sustainable Development Goals (7-Affordable and Clean Energy and 13-Climate Action).


Assuntos
Criopreservação , Compostos Férricos , Água , Criopreservação/métodos , Congelamento , Temperatura
15.
J Plant Physiol ; 296: 154233, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554674

RESUMO

Freezing temperature during overwintering often kills plants; plants have thus, developed a defense mechanism called 'cold acclimation', in which a number of genes are involved in increasing cell protection and gene expression. Mitogen-activated protein kinase (MAPK) controls proteins' activities by phosphorylation and is involved in numerous metabolic pathways. In this study, we identified the protein interaction between TaMAPK3 and the proteins in the cold response pathway, ICE41, ICE87, and CBFIVd-D9. The subcellular localization and bimolecular fluorescence complement (BiFC) assays revealed that these proteins interact in the nucleus or in the plasma membrane. Furthermore, MAPK3-mediated phosphorylation of ICE41, ICE87, and CBFIVd-D9 was verified using an in vitro phosphorylation assay. TaMAPK3-overexpressing transgenic Brachypodium showed a lower survival rate upon freezing stress and lower proline content during cold acclimation, compared to wild-type plants. Furthermore, cold response gene expression analysis revealed that the expression of these genes was suppressed in the transgenic lines under cold treatment. It was further elucidated that MAPK3 mediates the degradation of ICE and CBF proteins, which implies the negative impact of MAPK3 on the freezing tolerance of plants. This study will help to elucidate the molecular mechanisms of cold tolerance and the activity of MAPK3 in wheat.


Assuntos
Proteínas de Arabidopsis , Triticum , Congelamento , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Fosforilação , Regulação da Expressão Gênica de Plantas , Aclimatação/genética , Proteínas de Arabidopsis/metabolismo
16.
Artif Organs ; 48(5): 431-432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38482987

RESUMO

By freezing water droplets into smooth, even columns, researchers from Carnegie Mellon University created complex internal channels that may eventually render viable complex artificial tissue.


Assuntos
Órgãos Artificiais , Gelo , Humanos , Água , Congelamento , Impressão Tridimensional
17.
Int J Biol Macromol ; 265(Pt 2): 131037, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521300

RESUMO

A growing interest has arisen in recreating real meat by mimicking its texture characteristics and muscle fiber structure. Our previous work successfully created meat analog fiber based on soybean protein isolate (SPI) and sodium alginate (SA) with the wet-spinning method. In this work, we analyzed the microstructure, texture profile, and water retainability of the assembled plant-based whole muscle meat analog (PMA) made of SPI/SA-based meat analog fiber and systematically studied the effect of different combinations and contents of transglutaminase (TG), salt, and soybean oil on the rheological behavior of the formulated adhesive. The estimated optimal condition that has the most similar texture characteristic with real chicken breast meat is: for every 1:1 mass ratio of simulated plant meat fibers to the adhesive, add 0.1 % TG enzyme addition in the adhesive and 100 mM NaCl addition. The physical behavior of PMA during cryopreservation was investigated through freeze-thaw cycles and freezing times. The addition of a small amount of oil and salt can efficiently prevent the PMA through freezing conditions which is comparable with the addition of D-Trehalose (TD). Overall, this study not only created a plant-based whole muscle meat analog product that is similar in texture to real chicken breast meat but also provided a new direction for constructing fiber-rich structure protein-based muscle meat analogs and their further commercialization.


Assuntos
60450 , Proteínas de Soja , Congelamento , Músculos , Carne/análise , Proteínas Musculares , Alginatos , Cloreto de Sódio/química
18.
Food Chem ; 447: 138932, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38484546

RESUMO

The thawing method is critical for the final quality of products based on the frozen dough. The effects of ultrasound thawing, proofer thawing, refrigerator thawing, water bath thawing, ambient thawing, and microwave thawing on the rheology, texture, water distribution, fermentation characteristics, and microstructure of frozen dough and the properties of steamed bread were investigated. The results indicated that the ultrasound thawing dough had better physicochemical properties than other doughs. It was found that ultrasound thawing restrained the water migration of dough, improved its rheological properties and fermentation capacity. The total gas volume value of the ultrasound thawing dough was reduced by 21.35% compared with that of unfrozen dough. The ultrasound thawing dough displayed a thoroughly uniform starch-gluten network, and an enhanced the specific volume and internal structure of the steamed bread. In conclusion, ultrasound thawing effectively mitigated the degradation of the frozen dough and enhanced the quality of steamed bread.


Assuntos
Pão , Vapor , Pão/análise , Água/química , Glutens/química , Congelamento , Farinha/análise
19.
Cryo Letters ; 45(1): 16-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538368

RESUMO

BACKGROUND: The conventional sperm freezing method for dog sperm is with straws and includes two-step dilution and a long equilibration time. OBJECTIVE: To develop a more efficient freezing method using cryovials. MATERIALS AND METHODS: Three freezing protocols using cryovials (0.5 mL) were conducted with dog spermatozoa at 1 x 108 sperm/mL: Group 1 spermatozoa were cooled in cryovials and extender 1 (E1) and extender 2 (E1 +1 M glycerol) at 4 degree C for 50 min and then frozen over LN2 for 20 min; Group 2 sperm was cooled and frozen in cryovials with a mixture of E1 and E2 (1:1) in a deep freezer (-80 degree C) for 30 min; Group 3 sperm in cryovials and E1 were cooled at 4 degree C for 20 min, cooled for an additional 20 min after addition of E2 (E1:E2, 1:1), and then frozen using LN2/ vapour for 20 min. The control (Group 4) consisted of spermatozoa in straws being frozen using the conventional freezing method using two-step dilution. All groups were plunged and stored in LN2 after freezing and their functional performance and gene expression determined. RESULTS: Progressive motility and acrosome integrity were highest (P < 0.05) in Groups 2, 3 and 4 (only acrosome integrity). Viability in Group 3 was significantly better that in the other Groups, and the reactive oxygen species (ROS) level and phosphatidylserine (PS) translocation index were significantly lower in Group 2 than the other Groups. The expression of sperm mitochondria-associated cysteine-rich protein (SMCP) and anti-apoptotic B-cell lymphoma 2 (BCL2) genes was highest (P < 0.05) in Group 2 and the expression of pro-apoptotic Bcl2-associated X protein (BAX) was lowest (P < 0.05) in Group 4. CONCLUSION: The sperm frozen using cryovials, one step dilution and the deep freezer (Group 2) proved to be a simple and suitable cryopreservation method for dog sperm. https://doi.org/10.54680/fr24110110312.


Assuntos
Criopreservação , Preservação do Sêmen , Cães , Masculino , Animais , Criopreservação/veterinária , Criopreservação/métodos , Sêmen , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Espermatozoides , Acrossomo , Congelamento , Crioprotetores/farmacologia
20.
Cryo Letters ; 45(1): 55-59, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38538373

RESUMO

BACKGROUND: Human donor skin is processed to make the acellular dermis matrix (ADM) for tissue repair and regeneration. There is no data on the viscoelastic properties of ADM at room and subzero temperatures. OBJECTIVE: The work evaluated the temperature dependence of viscoelastic properties of freeze-dried ADM. MATERIALS AND METHODS: Donor skin was de-epidermized, de-cellularized and freeze-dried with trehalose as the lyo-protectant. Glass transition of freeze-dried ADM was measured by differential scanning calorimeter (DSC), and viscoelastic properties were examined by dynamic mechanical analyzer (DMA). RESULTS: At the low moisture range (1.4 +/- 0.5%), the glass transition temperature (Tg) of freeze-dried ADM was 90 degree C to 100 degree C. As the moisture content increased, the Tg decreased steadily. At the high moisture range (10.8 +/- 2.9%), the Tg was 40 degree C to 60 degree C. There were large donor-to-donor variations in viscoelastic properties of freeze-dried ADM as demonstrated by the changes in storage modulus (G'), loss modulus (G") and damping factor tan delta (G"/G'). However, the trends of the temperature dependence for G', G" and tan delta were similar among all 8 donors. For each donor, changes in G' and G" were relatively small between -90 degree C and 40 degree C, and G' was at least one order of magnitude greater than G". Two viscoelastic relaxations were observed in freeze-dried ADM, one at -20 degree C and the other at -60 degree C respectively. CONCLUSION: Freeze-dried ADM was protected in the glassy carbohydrate matrix. DMA observed two viscoelastic relaxations (i.e., alpha process at -20 degree C and beta process at -60 degree C). Overall changes in G' and G'' of freeze-dried ADM were relatively small within one order of magnitude between -90 degree C and 40 degree C. https://doi.org/10.54680/fr24110110612.


Assuntos
Derme Acelular , Criopreservação , Humanos , Temperatura , Congelamento , Liofilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...